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A Critique of Type Systems
for Global Overloading

Dennis M. Volpano
Department of Computer Science

Naval Postgraduate School
Monterey, CA, USA

July 15, 1993

Abstract
Proposed extensions of the ML type system to incorporate global

overloading include the systems of [Kae88, CDO91, Smi9l, Kae92,
Jon92] and those related to the design of the functional programming
language Haskell [WaB89, CH092, NiP931. These systems have in
common the notion of a constrained type scheme which in some is
realized by type kinds and in others as explicit predicates. An analysis
of these type systems reveals that some are unsound with regard to
a suitable criterion for typability and some adopt a notion of type
generality that is inconsistent with that of system ML (DaM821.

1 Introduction

Much of the research in type theory is devoted to finding new type systems
that offer programmers more flexibility without compromising the advantages
of a strongly-typed language. One of the simplest type systems is A0, the
implicit, finitely-typed lambda calculus [Tiu90, BaH90]. It assigns finite
types to type-free A terms. For example, in Ao one can derive the typing
-- Ax. x : a -- + a. In fact, one can derive l- Ax. x : r --o' r for any finite type
r. Consequently, Ax. x can be assigned multiple types within a single term
as is necessary in deriving a type for (Ax. x) Ax.x in A0.



Although A0 allows a term denoting a polymorphic value to be assigned
multiple types, it does not allow a free identifier that denotes such a term
to be given multiple types within a single A term. For example, the term
(Ay. y y) A. z is untypable in .10 even though y, which is free in y y, denotes
Az.z. So although A0 has desirable properties like a decidable typability
problem and principal types for all typable terms, it is for the most part
unsuitable for direct use in a programming language.

This limitation was overcome in the ML type system [Mi178, DaM82]
which is an extension of Ao with type schemes. A type scheme represents a
very simple kind of polymorphism called parametric polymorphism. A free
identifier may be asserted to have infinitely many types via a type scheme.
However, in the interest of retaining principal types, lambda abstraction
in system ML is monomorphic as in A0. Thus (Ay. y y) A:. : is untypable in
system ML as well. How then does system ML allow free identifiers denoting
polymorphic values to be assigned multiple types? Only through its let
construct. So for example, (Ay. y y) Ax. : is written let y = A:. : in y y.

Like A0, system ML has a decidable typability problem and typable terms
have principal types. Further, it seems to offer an acceptable level of flexibil-
ity as evidenced by its incorporation in languages like Standard ML [HMM86I
and Miranda fTur86J. Yet it remains limited in some ways that appear to be
solely of theoretical interest, and in others that are very obvious in practice.

One practical limitation is that it prohibits overloading by restricting to
at most one the number of assumptions per identifier in a type assumption
set, a limitation noted by Milner himself in [Mi1781. Suppose we wish to
assert that a free identifier, say +, has precisely finite types int --* int --* int
and real ---, real --* real. Any assumption set in which + has one of the two
desired finite types precludes a derivation that it has the other. On the other
hand, any assumption set that assigns type scheme Va.a -ca --* a to +
is one from which too many types can be derived for +. Thus there is no
assumption set in system WL from which we can derive precisely the desired
finite types for +. Even system ML with subtypes is inadequate. From

A = {int real, + : real --+ real --+ real}

one could derive A I- + : int -,# int --* real but not A I- + : int --* int -# int.
Many extensions of system ML have been proposed to incorporate over-

loading. There are the systems of [Kae88, CDO91, Smi9l, Kae92, Jon92] and
those related to the design of the functional programming language Haskell
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[WaB89, CH092, NiP93]. This paper reviews these systems. As we shall
see, some are unsound under a proper notion of typability and some even
adopt a notion of type generality that is inconsistent with the original notion
proposed in [DaM821.

2 Constrained Type Schemes

The terms of the type systems we consider are typical. Every variable x
is a term, and if M and N are terms then so are Ax. M, (M N), and
let x = M in N. There is no expression that overloads identifiers locally
like the over expression proposed in [WaB89]. The only overloading the sys-
tems attempt to address is that which comes from an initial basis or sequence
of top-level definitions, which we call global overloading.

Each system has the same set of finite types defined in the usual way.
Every type variable a is a finite type, and if r, .... '. , are finite types then
so are r1 -. r2 and x(rl,..., r,,) where X is a type constructor of arity n.

The systems have in common the notion of a constrained type scheme
which in some is realized by a type of types called a kind and in others as an
explicit predicate. A kind is a universe of types over which a type variable
may be quantified. Kinds appear in [Kae88, CDO91, CH092, NiP93] where
the general form of a constrained type scheme is Va : p. a for some kind p.
Explicit predicates appear in the systems of [WaB89, Smi9l, Jon92, Kae92]
where the general form of a constrained type scheme is

Vaj,..., an with x, : rl,. .. , zI : r,,. r

for predicates x, : rl,... , Z, : rT. Predicates also appeared earlier in the
work of Holmstrom (Ho1831.

Although syntactically different, constrained type schemes of all these
systems may be interpreted as Horn clauses. For example, suppose multipli-
cation (*) and the multiplicative identity (1) are overloaded in a type basis.
Then if both were free in a definition of expon that raises a value to some
integer power then ezpon should have as types r --t int --+ -r for any finite
type r for which predicates 1 : r and * : r --+ r -- T r are true. This may be
expressed by a constrained type scheme using predicates as

expom: Va with 1: a, •:a -- a --- a. a -- int -- a. Acession For
ITIS GA&I
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If T,(r) means x : r then this is interpreted as the Horn clause

Tez.(ct -- int - a) +- T1(a) A T.(a -- a --+ a).

It is natural to consider Horn clauses with other kinds of predicates as
well expressing, for example, subtype inclusions [Smi9l, Jon92, Kae92] and
even unification among finite types [Kae92]. The latter kind of predicate
shows that typability in system ML is actually an instance of typability in
a predicate-based system. Of course in system ML, the absence of a unifier
implies the given term is untypable and if unification succeeds, then a uni-
fying substitution can be reflected in an unconstrained type scheme, so no
explicit predicates or kinds are needed.

3 A Criterion for Typability

When is a term typable with respect to a set of type assumptions? One cri-
terion for typability often used for system ML is called strong type inference
[Tiu90]. Under it, a term M is typable with respect to an assumption set B
if there is an assumption set A and type a such that B C A and A -- M : a
is derivable. Thus in a formulation of the typability problem, M and B are
considered input. Yet the problem only requires finding an A that contains
B so there is considerable latitude in the choice of A. In fact, within the
context of overloading, there is too much. Consider the term true + true,
where true denotes a truth value and + integer addition as conveyed by the
assumption set

B = {true : bool, + : int - int -* int}.

Then the term could be typable under B in a sound type system since with

A = B U {+: bool -- bool --* bool}

we can derive A I- true + true : bool. But B H- true + true : bool is
not derivable, since + does not have an instance for type bool within B.
Therefore the term should not be typable under B.

Thus a suitable criterion for typability is strong type inference with the
requirement that B I- M : a be derivable. However a is constrained so unless
a type system prevents quantification over an empty type universe, it may
be unsound in that terms with domain incompatibilities are typable.
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4 Soundness of the Proposed Systems

The early work of Kaes [Kae88] led to an extension of system ML based
on type kinds. It permits a restricted form of overloading called parametric
overloading which, when extended to allow overloading of constants, corre-
sponds to the kind allowed in Haskell. Kaes gives a type inference algorithm
where unification is done with variables having kinds. This was later discov-
ered to be an application of order-sorted unification in [NiS91] where type
inference in Haskell, which permits overloading via classes, is implemented
in the context of order-sorted algebras.

Kaes's extension has two kinds of assumption sets, one for ordinary type
assumptions and the other for overloading assumptions. For example,

A = I f : Vaf )-cif) -+ c{fl,

9 : Vc{g}. a{,) -, •(9)

is a type assumption set and

0 = I f : (w - w, {int, real}),
{ : (w --+w, I bool, char})

is an overloading assumption set. Set 0 specifies the different finite types for
the overloaded identifiers f and g. The types of f, for example, are formed
by replacing w in w -- w by int and real.

A type variable may be annotated with a set of identifiers that effectively
specifies its kind. The variable ranges only over those finite types for which
all functions in the set are simultaneously defined. So a1 , for example, ranges
over types int and real, but not bool, with respect to 0.

Under the strong type inference criterion, a term M would be typable
with respect to A and 0 in this system if

A, O F- M : a for some type a.

But the system is unsound under this criterion, for even though 0 specifies
that f and g have no finite types in common, we can derive

A, 0 I- Ax. g(f z) : Va{,,s}. Cz{,,,} "-" .4 }
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in the system:

aUf,,) - Of{ f) <o VQ{1}. & fj} -- Qfj) (<o)
A U {x a(j}, O F- f : Of,, -- afs4 } (var)

-,q) " a{ff,} <a VaOW. a{f) -- * (<.)

A U {x : ac,{)}, O•g : af) -- af-0) (var)
A U {x : a(Qf)), 0 g( x): 9(1 ) (app)2

A, 0 " Ax.g( z ) - a-il) (abs)

A, 0 - Ax. g(f x) : Va{j 5). a{lo) --* a{f.) (closure)

In essence we can hypothesize overlap in the types of f and g through type
a{Offs for the sake of showing Ax. g(fx) is typable, yet we are not required
to show that any overlap exists. Thus a type can be derived for the term
under A and 0 even though the term has a type incompatibility. A sound
variant of this system is given in [Rou9O, Kae92].

Parametric overloading prevents certain kinds of overloadings like

{ +: int -real --, real,
+: real -- complex -- complex

which is useful for describing mixed-mode arithmetic. In an attempt to
permit more general kinds of overloadings, Wadler and Blott give a predicate-
based extension of system ML [WaB89]. But like [Kae88], it too is unsound
under strcng type inference. Further, unlike Kaes's system which restricts
overloading, typability in their system under a revised criterion is undecidable
(VoS91]. A restriction that allows overloadings for mixed-mode arithmetic
and for which typability is decidable is given in [VoS91].

The type system ML0 described in [Smi9l] is sound. It replaces the type
generalization and instantiation rules of ML by the following rules.

(V-intro) AUCF-M:r', AFC--(:=fj (d not free in A)
A F- M : V& with C. r'

(V-elim) AF-M:Vdi with C.r', ACI&-CG :=-1f
A F- M : r'[Ct:= -]

6



To illustrate these rules, consider a term M = Ax. (z + x), with free identifier

+, and a type assumption set B defined as follows.

+ : int -int -- int,

B + : real real --* real,
< char- char --+ bool,
<: V with < : a --. a --* bool. seq(a) --+ seq(a) --+ bool

We show a derivation of B I- M : Va with + :a a --o. a. a --* a in ML,.

BU {+: a - a U {z: a}z :a (hypoth)

BU{+:a..-. a}U{x:aa}-+:a-"a a (hypoth)

B U {+ :a- a} U {x: a} F- (x+): (--elim)2

B U {+ :a-a-.a} "A.( + x) :a--a (--intro)

B f{+ a--}-a-.a}[a" real] (hypoth)

BI- Ax.(x+x) :Va with + :a- a -4-a.a--*a (V-intro)

The last step of the derivation discharges assumption + : a --+ a -+ a which

was used to derive a type for M, making a type derivation possible from the

initial set B. Before this could be done however, we needed to establish that

the assumption is derivable with a instantiated to some finite type (real was
chosen in our example although int would have sufficed). For some terms

and type assumptions, this is impossible. The term M = Ax. Ay. y _< (x + x)
together with B is an example. We can hypothesize a type assumption set
C in which + and _< overlap on some finite type, say a, by defining C as

C = {+ : a--a-, a a, <5: a -- * a --+ bool}

and then derive B U C I- M : a --+ a -- bool. But the derivation must end

here because there is no finite type for a that allows us to derive C from B,

so M is untypable.
The work of [CD0911 is an effort to relax the restrictions of a parametric

overloading. They give a kind-based extension of system ML that restricts re-

cursive overloadings slightly less than parametricity and for which typability
is decidable. Yet assumptions for mixed-mode arithmetic are still prohibited.

The system however is sound un,•er strong type inference. It is interesting
to see how the system prevents a type from being derived for term Ax. 9(f x)

when free identifiers f and g have no finite types in common.

7



Derivations are made with respect to a traditional type environment A

and a kind environment r that maps type variables to kinds. There are two

operators on kinds, fix and a union operator U. Kinds are partially ordered

by a containment relation :5 such that 1 <5 p for any kind p.

The type instantiation and generalization rules of system ML are modified

to accomodate constrained type schemes with kinds:

(inst) I; A-_ M:Va:p._ __ _5_p (r<r)p)r; A ý--M :a[ca:= r]

(gen) _,a:p; A_ -M:a (a not free in A A p _ _L)
F; AH'M:Va:p.a

Here 17(r) is finite type r with all free type variables replaced by the kinds

prescribed for them by r.
Suppose

{ f: Va : int U real. a -- a,
g : Va : bool U char. a -* "

The only way we can ½ypothesize any overlap between f and g is through

use of kind I since I < p for any kind p. Proceeding in this way yields

{10: L}; A {: 3}Ix : x (var)

r(I) = I < int U real (<)

{/3:±.}; AU{z: } f:Va:intUreal. a--+a (var)

{13: 2.}; AU {x:0} -f: 3-- (inst)

S= I < boot u char (W )
{f :2.}; AU {x(:xj} H g: Va: boolUchar. ca--* a (var)
{f,3 :-1; A U jx:B} F-g: 0--+ 3 (inst)

{l:o }; AU {: 0} H- g(f x): 0 (app)2

{1,: -. }; A t- Ax. g(I x) : 0l -- 3 (abs)

The generalization rule cannot be applied at this point to discharge the re-

maining kind assumption {13: _} so Ax. g(f x) is untypable under A.

The type system of [CH092] is another kind-based extension of system

ML, that unlike [CDO91], is unsound under strong type inference. This work
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is not an attempt to relax the restrictions of parametric overloading but
rather to formalize a type system for Haskell with parametric type classes.

Derivations in [CH0921 are also made with respect to a traditional type
environment A and a kind environment, which they call a context C, mapping
type variables to kinds. Kinds here are taken to be sets of class names r with
each class having an optional finite type as parameter. So for example, if F
and G are class names, then {a:: {F, G}I is a kind environment that asserts
a is a class instance of F and G, meaning that a is a Lype over which the
operations of both classes F and G are defined.

The type instantiation and generalization rules of system ML are replacea
by rules (V-elim) and (V-intro):

(V-elim) A, C - M : VQ::r. o

A, C•FM•:a[a:=r] (CH-T::r)

(V-intro) A, C, a:: r I- M : aACM:Vx::~o(a not free in Aor C)A, C I- M Var::F. o

where C I+- r :: F is derived using a set of entailment inference rules with
class instance declarations D as axioms. For example, if D = {int :: F} then
0 H- int::F.

Suppose that

D = {int :: F, real :: F, bool :: G, char :: G}

which asserts that class F has as instances finite types int and real, and class

G, types bool and char. So with respect to D, there is no finite type over
which the operations of F and G are defined. But with

A f : Va::{F}. a'- a,
g Va::{G}. a --+ a

we can derive

A - Ax. g(f x) : VO::{F, G}. 0 -*

in the system, thus establishing that Ax. g(f x) is typable with respect to A
under the strong type inference criterion even though the derived type scheme

9



has no finite types as instances with respect to D. Using kind {F, G}, we
hypothesize overlap between f and g yielding the derivation

AU{x :0}, {#::{F,G}} : x/: (var)
{fi:: {F, G}}J - 0::F F E {F,G}

{6:: {F, G} I H-:: {F} ( + )
AU{Ix : }, {3 :: {F, G}} -f:Va::{F}.ca-.a (var)
AU{x: :,}, {13:: {F,G)} f:13-. f (V-elim)
Ia:: I{F, G)} H- 03::G G E {F,G}

{/3:: IF, G}} H- :: {G} (+- )
AU{x :13}, {1::{F,G}} I -g:Va::{G}.ca-.+a (var)
A U {x: 3}, {(0:: {F, G} }F• g: - 3 (V-elim)
A U {z: :/}, (0:: {F,G}} F- g(f x) 3 (A-elim)2

A, {f3:: {F,G}} I Ax.g(f x) : •3-- 1 (A-intro)

A F- Ax. g(f x) V:3::{F, G}. --+3 (V-intro)

In the final step, the entire context is discharged even though there is no finite
type that satisfies it with respect to D. An almost identical derivation can
be constructed in the system of [NiP93] and in the predicate-based extension
of system ML given in [Jon92]. With a minor reformulation of A and D
requiring kinds to be interpreted as predicate sets so that for example D is

{F int, F real, G bool, G char}

viewing F and G as predicates, one can derive in the system of [Jon92]

DIA ý- Ax.g(f x) : Va.{Fa, Ga} =* a - a.

Although D specifies no overlap for f and g, we can prove the judgement.

5 Type Generality

In order to define in the systems considered here a notion of principal type
among derivable types, a generic instance relation is needed that tells us
whether one type is more general than another [DaM82]. In the context of
constrained type schemes, this relation becomes a preorder rather than a

10



partial order since two distinct types can each be a generic instance of the
other.

Some of the proposed type systems require that in order for a constrained
type scheme o' to be a generic instance of another such scheme a, it must be
possible to replace the bound variables of o, by finite types so as to make the
bodies of a' and a' syntactically equal [WaB89, CHO92, Kae92, Jon92]. This
is an artifact of the original relation of [DaM82], which for system ML, gives
a way to check that a has as instances all finite types that are instances of
a", or in other words, that a' is more general than a'. However, the relation
is also typically defined relative to some form of assumptions from which an
attempt can be made to show that a finite type is an element of a kind or
that a predicate is true. Now it is no longer appropriate to demand syntactic
equality of type bodies in order to establish that one constrained type scheme
is more general than another.

For example, in the system of [CH092J, constrained type scheme

Va::{F}.VO::(F}. a -- /

is not a generic instance of

V-f::IF}. - --+-

with respect to any set of class instance declarations since there is no sub-
stitution on -y that when applied to -y - -y gives a -* 3. Yet in the context
of a single declaration, say (int :: F1, the latter type does indeed have as
instances all finite types that are instances of the former (only int --+ int)
and is therefore more general in this context. Similar examples can be given
in the systems of [WaB89, Kae92, Jon92].
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